The role of mRNA turnover in the regulation of tristetraprolin expression: evidence for an extracellular signal-regulated kinase-specific, AU-rich element-dependent, autoregulatory pathway.

نویسندگان

  • Seth A Brooks
  • John E Connolly
  • William F C Rigby
چکیده

Tristetraprolin (TTP) is a regulator of TNF-alpha mRNA stability and is the only trans-acting factor shown to be capable of regulating AU-rich element-dependent mRNA turnover at the level of the intact animal. Using the THP-1 myelomonocytic cell line, we demonstrated for the first time that TTP is encoded by an mRNA with a short half-life under resting conditions. Using pharmacologic inhibitors of the mitogen-activated protein kinase pathways, we show that the induction of TTP by LPS activation is mediated through changes in transcription, mRNA stability, and translation. A coordinate increase in both TTP and TNF-alpha mRNA stability occurs within 15 min of LPS treatment, but is transduced through different mitogen-activated protein kinase pathways. This regulation of TTP and TNF-alpha mRNA stability is associated with the finding that TTP binds these mRNA under both resting and LPS-activated conditions in vivo. Finally, we demonstrate that TTP can regulate reporter gene expression in a TTP 3' untranslated region-dependent manner and identify three distinct AU-rich elements necessary to mediate this effect. Thus, TTP regulates its own expression in a manner identical to that seen with the TNF-alpha 3' untranslated region, indicating that this autoregulation is mediated at the level of mRNA stability. In this manner, TTP is able to limit the production of its own proteins as well as that of TNF-alpha and thus limit the response of the cell to LPS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways.

The p38 mitogen-activated protein kinase (MAPK) signaling pathway, acting through the downstream kinase MK2, regulates the stability of many proinflammatory mRNAs that contain adenosine/uridine-rich elements (AREs). It is thought to do this by modulating the expression or activity of ARE-binding proteins that regulate mRNA turnover. MK2 phosphorylates the ARE-binding and mRNA-destabilizing prot...

متن کامل

Coordinated Expression of Tristetraprolin Post-Transcriptionally Attenuates Mitogenic Induction of the Oncogenic Ser/Thr Kinase Pim-1

The serine/threonine kinase Pim-1 directs selected signaling events that promote cell growth and survival and is overexpressed in diverse human cancers. Pim-1 expression is tightly controlled through multiple mechanisms, including regulation of mRNA turnover. In several cultured cell models, mitogenic stimulation rapidly induced and stabilized PIM1 mRNA, however, vigorous destabilization 4-6 ho...

متن کامل

The p38/MK2-Driven Exchange between Tristetraprolin and HuR Regulates AU–Rich Element–Dependent Translation

TNF expression of macrophages is under stringent translational control that depends on the p38 MAPK/MK2 pathway and the AU-rich element (ARE) in the TNF mRNA. Here, we elucidate the molecular mechanism of phosphorylation-regulated translation of TNF. We demonstrate that translation of the TNF-precursor at the ER requires expression of the ARE-binding and -stabilizing factor human antigen R (HuR...

متن کامل

Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase.

AU-rich elements (ARE) present in the 3' untranslated regions of many cytokines and immediate-early genes are responsible for targeting the transcripts for rapid decay. We present evidence from cotransfection experiments in NIH 3T3 cells that two signaling pathways, one involving phosphatidylinositol 3-kinase (PI3-K), and one involving the p38 mitogen-activated protein kinase (MAPK), lead to st...

متن کامل

GSK3β and CREB3 Gene Expression Profiling in Benign and Malignant Salivary Gland Tumors

Background: Salivary gland tumors (SGT) are rare lesions with uncertain histopathology. One of the major signaling pathways that participate in the development of several tumors is protein kinase A. In this pathway, glycogen synthase kinase β (GSK3β) and cAMP responsive element binding protein (CREB3) are two genes which are supposed to be down regulated in most human tumors. The expression lev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 172 12  شماره 

صفحات  -

تاریخ انتشار 2004